
Chapter 9

Coping with NP-completeness

You are the junior member of a seasoned project team. Your current task is to write code for

solving a simple-looking problem involving graphs and numbers. What are you supposed to

do?

If you are very lucky, your problem will be among the half-dozen problems concerning

graphs with weights (shortest path, minimum spanning tree, maximum flow, etc.), that we

have solved in this book. Even if this is the case, recognizing such a problem in its natural

habitat—grungy and obscured by reality and context—requires practice and skill. It is more

likely that you will need to reduce your problem to one of these lucky ones—or to solve it using

dynamic programming or linear programming.

But chances are that nothing like this will happen. The world of search problems is a bleak

landscape. There are a few spots of light—brilliant algorithmic ideas—each illuminating a

small area around it (the problems that reduce to it; two of these areas, linear and dynamic

programming, are in fact decently large). But the remaining vast expanse is pitch dark: NP-

complete. What are you to do?

You can start by proving that your problem is actually NP-complete. Often a proof by

generalization (recall the discussion on page 270 and Exercise 8.10) is all that you need; and

sometimes a simple reduction from 3SAT or ZOE is not too difficult to find. This sounds like a

theoretical exercise, but, if carried out successfully, it does bring some tangible rewards: now

your status in the team has been elevated, you are no longer the kid who can’t do, and you

have become the noble knight with the impossible quest.

But, unfortunately, a problem does not go away when proved NP-complete. The real ques-

tion is,What do you do next?

This is the subject of the present chapter and also the inspiration for some of the most

important modern research on algorithms and complexity. NP-completeness is not a death

certificate—it is only the beginning of a fascinating adventure.

Your problem’s NP-completeness proof probably constructs graphs that are complicated

and weird, very much unlike those that come up in your application. For example, even

though SAT is NP-complete, satisfying assignments for HORN SAT (the instances of SAT that

come up in logic programming) can be found efficiently (recall Section 5.3). Or, suppose the

graphs that arise in your application are trees. In this case, many NP-complete problems,

283

284 Algorithms

such as INDEPENDENT SET, can be solved in linear time by dynamic programming (recall

Section 6.7).

Unfortunately, this approach does not always work. For example, we know that 3SAT

is NP-complete. And the INDEPENDENT SET problem, along with many other NP-complete

problems, remains so even for planar graphs (graphs that can be drawn in the plane without

crossing edges). Moreover, often you cannot neatly characterize the instances that come up

in your application. Instead, you will have to rely on some form of intelligent exponential

search—procedures such as backtracking and branch and bound which are exponential time

in the worst-case, but, with the right design, could be very efficient on typical instances that

come up in your application. We discuss these methods in Section 9.1.

Or you can develop an algorithm for your NP-complete optimization problem that falls

short of the optimum but never by too much. For example, in Section 5.4 we saw that the

greedy algorithm always produces a set cover that is no more than log n times the optimal

set cover. An algorithm that achieves such a guarantee is called an approximation algorithm.

As we will see in Section 9.2, such algorithms are known for many NP-complete optimization

problems, and they are some of the most clever and sophisticated algorithms around. And the

theory ofNP-completeness can again be used as a guide in this endeavor, by showing that, for

some problems, there are even severe limits to how well they can be approximated—unless of

course P = NP.

Finally, there are heuristics, algorithms with no guarantees on either the running time or

the degree of approximation. Heuristics rely on ingenuity, intuition, a good understanding

of the application, meticulous experimentation, and often insights from physics or biology, to

attack a problem. We see some common kinds in Section 9.3.

9.1 Intelligent exhaustive search

9.1.1 Backtracking

Backtracking is based on the observation that it is often possible to reject a solution by looking

at just a small portion of it. For example, if an instance of SAT contains the clause (x1 ∨ x2),
then all assignments with x1 = x2 = 0 (i.e., false) can be instantly eliminated. To put
it differently, by quickly checking and discrediting this partial assignment, we are able to

prune a quarter of the entire search space. A promising direction, but can it be systematically

exploited?

Here’s how it is done. Consider the Boolean formula φ(w, x, y, z) specified by the set of
clauses

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z).

We will incrementally grow a tree of partial solutions. We start by branching on any one

variable, say w:

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 285

Initial formula φ

w = 1w = 0

Plugging w = 0 and w = 1 into φ, we find that no clause is immediately violated and

thus neither of these two partial assignments can be eliminated outright. So we need to keep

branching. We can expand either of the two available nodes, and on any variable of our choice.

Let’s try this one:

Initial formula φ

w = 1w = 0

x = 0 x = 1

This time, we are in luck. The partial assignment w = 0, x = 1 violates the clause (w ∨ x)
and can be terminated, thereby pruning a good chunk of the search space. We backtrack out

of this cul-de-sac and continue our explorations at one of the two remaining active nodes.

In this manner, backtracking explores the space of assignments, growing the tree only at

nodes where there is uncertainty about the outcome, and stopping if at any stage a satisfying

assignment is encountered.

In the case of Boolean satisfiability, each node of the search tree can be described either

by a partial assignment or by the clauses that remain when those values are plugged into the

original formula. For instance, if w = 0 and x = 0 then any clause with w or x is instantly

satisfied and any literal w or x is not satisfied and can be removed. What’s left is

(y ∨ z), (y), (y ∨ z).

Likewise, w = 0 and x = 1 leaves

(), (y ∨ z),

with the “empty clause” () ruling out satisfiability. Thus the nodes of the search tree, repre-
senting partial assignments, are themselves SAT subproblems.

This alternative representation is helpful for making the two decisions that repeatedly

arise: which subproblem to expand next, and which branching variable to use. Since the ben-

efit of backtracking lies in its ability to eliminate portions of the search space, and since this

happens only when an empty clause is encountered, it makes sense to choose the subproblem

that contains the smallest clause and to then branch on a variable in that clause. If this clause

286 Algorithms

Figure 9.1 Backtracking reveals that φ is not satisfiable.

(), (y ∨ z)(y ∨ z), (y), (y ∨ z)

(z), (z)

(x ∨ y), (y ∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z)

(x ∨ y ∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0

happens to be a singleton, then at least one of the resulting branches will be terminated. (If

there is a tie in choosing subproblems, one reasonable policy is to pick the one lowest in the

tree, in the hope that it is close to a satisfying assignment.) See Figure 9.1 for the conclusion

of our earlier example.

More abstractly, a backtracking algorithm requires a test that looks at a subproblem and

quickly declares one of three outcomes:

1. Failure: the subproblem has no solution.

2. Success: a solution to the subproblem is found.

3. Uncertainty.

In the case of SAT, this test declares failure if there is an empty clause, success if there are

no clauses, and uncertainty otherwise. The backtracking procedure then has the following

format.

Start with some problem P0

Let S = {P0}, the set of active subproblems

Repeat while S is nonempty:

choose a subproblem P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If test(Pi) succeeds: halt and announce this solution

If test(Pi) fails: discard Pi

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 287

Otherwise: add Pi to S
Announce that there is no solution

For SAT, the choose procedure picks a clause, and expand picks a variable within that clause.

We have already discussed some reasonable ways of making such choices.

With the right test, expand, and choose routines, backtracking can be remarkably effec-

tive in practice. The backtracking algorithm we showed for SAT is the basis of many successful

satisfiability programs. Another sign of quality is this: if presented with a 2SAT instance, it

will always find a satisfying assignment, if one exists, in polynomial time (Exercise 9.1)!

9.1.2 Branch-and-bound

The same principle can be generalized from search problems such as SAT to optimization

problems. For concreteness, let’s say we have a minimization problem; maximization will

follow the same pattern.

As before, we will deal with partial solutions, each of which represents a subproblem,

namely, what is the (cost of the) best way to complete this solution? And as before, we need

a basis for eliminating partial solutions, since there is no other source of efficiency in our

method. To reject a subproblem, we must be certain that its cost exceeds that of some other

solution we have already encountered. But its exact cost is unknown to us and is generally

not efficiently computable. So instead we use a quick lower bound on this cost.

Start with some problem P0

Let S = {P0}, the set of active subproblems

bestsofar = ∞
Repeat while S is nonempty:

choose a subproblem (partial solution) P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If Pi is a complete solution: update bestsofar

else if lowerbound(Pi) < bestsofar: add Pi to S
return bestsofar

Let’s see how this works for the traveling salesman problem on a graph G = (V,E) with
edge lengths de > 0. A partial solution is a simple path a b passing through some vertices

S ⊆ V , where S includes the endpoints a and b. We can denote such a partial solution by the

tuple [a, S, b]—in fact, awill be fixed throughout the algorithm. The corresponding subproblem
is to find the best completion of the tour, that is, the cheapest complementary path b a with

intermediate nodes V −S. Notice that the initial problem is of the form [a, {a}, a] for any a ∈ V

of our choosing.

At each step of the branch-and-bound algorithm, we extend a particular partial solution

[a, S, b] by a single edge (b, x), where x ∈ V −S. There can be up to |V −S| ways to do this, and
each of these branches leads to a subproblem of the form [a, S ∪ {x}, x].

288 Algorithms

How can we lower-bound the cost of completing a partial tour [a, S, b]? Many sophisticated
methods have been developed for this, but let’s look at a rather simple one. The remainder of

the tour consists of a path through V −S, plus edges from a and b to V −S. Therefore, its cost

is at least the sum of the following:

1. The lightest edge from a to V − S.

2. The lightest edge from b to V − S.

3. The minimum spanning tree of V − S.

(Do you see why?) And this lower bound can be computed quickly by a minimum spanning

tree algorithm. Figure 9.2 runs through an example: each node of the tree represents a partial

tour (specifically, the path from the root to that node) that at some stage is considered by the

branch-and-bound procedure. Notice how just 28 partial solutions are considered, instead of
the 7! = 5,040 that would arise in a brute-force search.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 289

Figure 9.2 (a) A graph and its optimal traveling salesman tour. (b) The branch-and-bound

search tree, explored left to right. Boxed numbers indicate lower bounds on cost.

(a)

A B

C

D

EF

G

H

1

2

1

11

2

1

2

5

1 1

1

A B

C

D

EF

G

H

1 1

11

1

1 1

1

(b)

A

E

HF

G

B

F

G

D

15

14

8

B D

C

D H

G

H8

E C G

inf

8

10

13

12

8

814

8

8

8

8

10

C10

GE

F

G

H

D

11

11

11

11

inf

H

G

14

1410 10

Cost: 11 Cost: 8

290 Algorithms

9.2 Approximation algorithms

In an optimization problem we are given an instance I and are asked to find the optimum

solution—the one with the maximum gain if we have a maximization problem like INDEPEN-

DENT SET, or the minimum cost if we are dealing with a minimization problem such as the

TSP. For every instance I, let us denote by OPT(I) the value (benefit or cost) of the optimum
solution. It makes the math a little simpler (and is not too far from the truth) to assume that

OPT(I) is always a positive integer.

We have already seen an example of a (famous) approximation algorithm in Section 5.4:

the greedy scheme for SET COVER. For any instance I of size n, we showed that this greedy

algorithm is guaranteed to quickly find a set cover of cardinality at most OPT(I) log n. This

log n factor is known as the approximation guarantee of the algorithm.

More generally, consider any minimization problem. Suppose now that we have an algo-

rithm A for our problem which, given an instance I, returns a solution with value A(I). The
approximation ratio of algorithm A is defined to be

αA = max
I

A(I)

OPT(I)
.

In other words, αA measures by the factor by which the output of algorithm A exceeds the
optimal solution, on the worst-case input. The approximation ratio can also be defined for

maximization problems, such as INDEPENDENT SET, in the same way—except that to get a

number larger than 1 we take the reciprocal.

So, when faced with anNP-complete optimization problem, a reasonable goal is to look for

an approximation algorithm A whose αA is as small as possible. But this kind of guarantee

might seem a little puzzling: How can we come close to the optimum if we cannot determine

the optimum? Let’s look at a simple example.

9.2.1 Vertex cover

We already know the VERTEX COVER problem is NP-hard.

VERTEX COVER

Input: An undirected graph G = (V,E).

Output: A subset of the vertices S ⊆ V that touches every edge.

Goal: Minimize |S|.

See Figure 9.3 for an example.

Since VERTEX COVER is a special case of SET COVER, we know from Chapter 5 that it can

be approximated within a factor of O(log n) by the greedy algorithm: repeatedly delete the
vertex of highest degree and include it in the vertex cover. And there are graphs on which the

greedy algorithm returns a vertex cover that is indeed log n times the optimum.

A better approximation algorithm for VERTEX COVER is based on the notion of amatching,

a subset of edges that have no vertices in common (Figure 9.4). A matching is maximal if no

