5.3 Colouring edges

Clearly, every graph G satisfies $\chi'(G) \geq \Delta(G)$. For bipartite graphs, we have equality here:

Proposition 5.3.1. (König 1916)
Every bipartite graph G satisfies
$$
\chi'(G) = \Delta(G)
$$
. [5.4.5]

Proof. We apply induction on $||G||$. For $||G|| = 0$ the assertion holds. (1.6.1) Now assume that $||G|| \geq 1$, and that the assertion holds for graphs with fewer edges. Let $\Delta := \Delta(G)$, pick an edge $xy \in G$, and choose a Δ - Δ , xy edge-colouring of $G - xy$ by the induction hypothesis. Let us refer to the edges coloured α as α -edges, etc. α -edge

In $G - xy$, each of x and y is incident with at most $\Delta - 1$ edges. Hence there are $\alpha, \beta \in \{1, \ldots, \Delta\}$ such that x is not incident with an α, β α-edge and y is not incident with a β-edge. If $\alpha = \beta$, we can colour the edge xy with this colour and are done; so we may assume that $\alpha \neq \beta$, and that x is incident with a β -edge.

Let us extend this edge to a maximal walk W from x whose edges are coloured β and α alternately. Since no such walk contains a vertex twice (why not?), W exists and is a path. Moreover, W does not contain y: if it did, it would end in y on an α -edge (by the choice of β) and thus have even length, so $W + xy$ would be an odd cycle in G (cf. Proposition 1.6.1). We now recolour all the edges on W, swapping α with β . By the choice of α and the maximality of W, adjacent edges of $G - xy$ are still coloured differently. We have thus found a Δ -edge-colouring of $G - xy$ in which neither x nor y is incident with a β -edge. Colouring xy with β , we extend this colouring to a Δ -edge-colouring of G.

Theorem 5.3.2. (Vizing 1964) Every graph ^G satisfies

$$
\Delta(G) \leqslant \chi'(G) \leqslant \Delta(G) + 1.
$$

Proof. We prove the second inequality by induction on $||G||$. For $||G|| = 0$ V, E it is trivial. For the induction step let $G = (V, E)$ with $\Delta := \Delta(G) > 0$ be Δ given, and assume that the assertion holds for graphs with fewer edges. Instead of $(\Delta + 1)$ -edge-colouring' let us just say 'colouring'. An edge colouring coloured α will again be called an α -edge. α -edge

For every edge $e \in G$ there exists a colouring of $G - e$, by the induction hypothesis. In such a colouring, the edges at a given vertex v use at most $d(v) \leq \Delta$ colours, so some colour $\beta \in \{1,\ldots,\Delta+1\}$ is *missing at v.* For any other colour α , there is a unique maximal walk missing (possibly trivial) starting at v, whose edges are coloured alternately α and β . This walk is a path; we call it the α/β - path from v. α/β - path

Suppose that G has no colouring. Then the following holds: