Name: Student No.

Write in the left margin "T/F" for True/False.

1. $\begin{bmatrix} -x \end{bmatrix} = \begin{bmatrix} x \end{bmatrix}$

- 2. |x n| = |x| nт
- 3. $\lceil x \rceil = n \Leftrightarrow x 1 < x \le n$
- 4. $n \leq x \Leftrightarrow n \leq \lfloor x \rfloor$ 5. $\left[\sqrt{x}\right] = \left[\sqrt{x}\right]$ Т
- 6. $-5 \mod -1 = 0$ Т
- 7. If $n = 2^m + l$, where $0 \le l < 2^m$, then $l = n 2^{\lfloor \log n \rfloor}$. Т

Т

Т

Т

- 8. Suppose that round(x) means the nearest integer of x; if x is n.5, for some integer n, then it is rounded up. Then, round(x) = [x + .5]. F
- 9. For an integer *n* and a real *x*, we know that $\lfloor nx \rfloor = \lfloor n \lfloor x \rfloor + n \{x\} \rfloor = n \lfloor x \rfloor + \lfloor n \{x\} \rfloor$. Therefore, $\lfloor nx \rfloor = n \lfloor x \rfloor \Leftrightarrow \lfloor n\{x\} \rfloor = 0 \Leftrightarrow 0 \le n\{x\} < 1.$
- 10. Let the *m* be the *n*-th number in the sequence: 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, Then, $m(m - 1)/2 < n \le m(m + 1)/2.$ Т
- 11. $k \mid m$ and $k \mid n \Leftrightarrow k \mid \gcd(m, n)$
- 12. 30031 is prime. F. 30031 = 59*509
- 13. Since it is possible to prove that any Euclid number $e_n \mod 5 = 2$ or 3, the statement "every prime number is a factor of some Euclid number" is false. T. 5 is a prime, but it is not factor of any Euclid number.
- 14. 100! is divisible by 2^{197} . F
- 15. *m* and *n* are relatively prime means at least one of them is prime. F

Т

16. $ad \equiv d^2 \Leftrightarrow a \equiv d$ F

- 17. Testing whether a number *n* is prime or not can be done in $O(\log n)$ time. T. By AKS algorithm.
- 18. $n! = (2\pi n)^{1/2} (n/e)^n$ F. It should be \approx .
- 19. If *p* is prime, then $a^{p-1} \equiv 1 \pmod{p}$ for all integer *a*. F. It should be $a^p \equiv a$, and unless a and p are not relatively prime, from here we can not write $a^{p-1} \equiv 1 \pmod{p}.$
- 20. If *n* is not prime, then it is always possible to find an integer x < n such that $x^{n-1} \mod n \neq 1$. Т