CSE 207 Class Test 1 Answers with Brief Explanation

15 February, 2011. Full marks: 20

Student No.. Name: ..

True/False $(40 * 0.5 = 20)$ marks.

Write "T" for true and "F" for false for each of the following statement. Write in the left margin.

- 1. When we say "running time", we mean "worst case" running time. [T]
- 2. $f(n) = O(g(n))$ can also be written as $f(n) \in O(g(n))$; In fact, the later approach is more appropriate. [T, because $g(n)$ is a set of many functions like $f(n)$, i.e., there are many functions like $f(n)$ whose asymptotic upper bound is $g(n)$.]
- 3. If $f(n) = \Theta(q(n))$, then $f(n) = O(q(n))$. [T]
- 4. If $f(n) = \Omega(g(n))$, then $g(n) = O(f(n))$. [T]
- 5. $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$. [T]
- 6. $2n^2 = o(n^2)$. [F]
- 7. The statement "The running time of algorithm A is at least $O(n^2)$ " is meaningless, because it should be written as "The running time of algorithm A is at least $\Omega(n^2)$. [T]
- 8. o and ω are asymptotic tight bounds. [F, non-tight bounds.]
- 9. Θ is asymptotic perfect bound. [F, asymptotic tight bounds.]
- 10. Ig n is polynomially larger than n^{ε} , for some small constant $\varepsilon > 0$. [F, try $LT_{n\to\infty} \frac{\lg n}{n^{\varepsilon}}$.]
- 11. lg $n = O(n \lg n)$ but not lg $n = \Omega(n \lg n)$ [T, first one is not tight.]
- 12. $\lg \lg n = \lg^2 n$. [F, $\lg \lg n = \lg(\lg n)$ and $\lg^2 n$ is $(\lg n)^2$; two are different.]
- 13. In order to say $f(n) = o(g(n))$, is suffices to find a constant $c > 0$ and an integer $n_0 > 0$ such that $0 \le f(n) < cg(n)$. [F, it should be for all constant $c > 0$.]
- 14. If $f(n) = \omega(g(n))$, then $LT_{n \to \infty} \frac{f(n)}{g(n)} = 0$. [F, should be ∞]
- 15. $n^{\lg c} = \Theta(c^{\lg n})$. [T, take $\lg n = y$, then both solves to c^y]
- 16. Sub-linear means $O(n \lg n)$. [F, $o(n)$]
- 17. Strassen's algorithm improves on traditional divide and conquer algorithm, because it uses small number of addition. [F, small number of multiplication.]
- 18. The recurrence relation for traditional divide and conquer algorithm for matrix multiplication is: $T(n) = 6T(n/2) + \Theta(n)$. [F, 6 should be 7.]
- 19. The recurrence relation for Strassen's algorithm is: $T(n) = 7T(n/2) + O(1)$. [F, $O(1)$ should be $\Theta(n)$.]
- 20. In the above two recurrence relations, 6 and 7 stand for 6 and 7 additions respectively. [F, 6 and 7 are for multiplications.]
- 21. Master method can solve any recurrence relation. [F]
- 22. Asymptotic bounds achieved by Master theorem are always tight. [T, all cases give Θ.]
- 23. $T(n) = 2T(n/4) + \sqrt{n}$ solves to $\Theta(\sqrt{n} \lg n)$. [T, case 2 of Master method.]
- 24. The second condition in Case 3 of Master theorem indicates that the cost of conquer should be nonincreasing. [T]
- 25. Master theorem can solve this recurrence: $T(n) = 4T(n/2) + n^2 \lg n$. [F, similar to the negative example given in the book.]
- 26. In quick sort, two elements are compared at least once. [F, at most once.]
- 27. In quick sort, assuming the numbering of the elements as z_1, z_2, \ldots, z_n in their sorted sequence, the probability of two elements z_i and z_j are compared is: $\frac{2}{i+j+1}$. [F, $\frac{2}{j-i+1}$]
- 28. In quick sort, two elements z_i and z_j are compared if and only if one of them is selected as a pivot among the elements that are within the sorted sequence of z_i and z_j (inclusive). [F, "selected first"]
- 29. Average running time and expected running time are the same. [T]
- 30. Running time of a quick sort algorithm with $75\% 25\%$ balanced partitioning is $O(n \lg_{0.25} n)$. [F, $O(n \lg_{4/3} n)$
- 31. $\sum_{k=1}^{n} \frac{2}{k} = O(\lg^2 n)$. [F, $O(\lg n)$]
- 32. A lower bound for any sorting algorithm is $\Omega(n \lg n)$. [T, but not tight, e.g., $\Omega(n^2)$ for insertion sort.]
- 33. Lower bound for sorting is $\Omega(n \lg n)$. [T]
- 34. $\Omega(n)$ is another lower bound for sorting. [T, but not tight.]
- 35. lg $n! \geq \lg(n/2)^{(n/2)} = \Omega(n \lg n)$. [T]
- 36. To determine the minimum running time from a decision tree, we need to take the shortest path in the tree. [F, longest path.]
- 37. An algorithm for a problem is asymptotically optimal when the upper bound matches the lower bound of the algorithm. [F, should match with the lower bound of the problem.]
- 38. Insertion sort has running time $\Theta(n^2)$, i.e., both upper and lower bounds are same as n^2 . Therefore, insertion sort is an optimal sorting algorithm. [F, in the class test question, the second n^2 was written as $n \lg n$, it was a typo, but still the answer is "F".
- 39. The leaves of a decision tree for sorting are the permutations of the elements. [T]
- 40. An exponential running time is infeasible. [T, because it would take too much time as n grows larger.]