
CSE 207 Class Test 1 Answers with Brief Explanation

15 February, 2011. Full marks: 20

Student No...................................................... Name: ..................................................................

True/False (40 ∗ 0.5 = 20) marks.

Write “T” for true and “F” for false for each of the following statement. Write in the left margin.

1. When we say “running time”, we mean “worst case” running time. [T]

2. f(n) = O(g(n)) can also be written as f(n) ∈ O(g(n)); In fact, the later approach is more appropriate.
[T, because g(n) is a set of many functions like f(n), i.e., there are many functions like f(n) whose
asymptotic upper bound is g(n).]

3. If f(n) = Θ(g(n)), then f(n) = O(g(n)). [T]

4. If f(n) = Ω(g(n)), then g(n)) = O(f(n)). [T]

5. f(n) = o(g(n)) if and only if g(n) = ω(f(n)). [T]

6. 2n2 = o(n2). [F]

7. The statement “The running time of algorithm A is at least O(n2)” is meaningless, because it should
be written as “The running time of algorithm A is at least Ω(n2). [T]

8. o and ω are asymptotic tight bounds. [F, non-tight bounds.]

9. Θ is asymptotic perfect bound. [F, asymptotic tight bounds.]

10. lg n is polynomially larger than nε, for some small constant ε > 0. [F, try LTn→∞
lg n
nε .]

11. lg n = O(n lg n) but not lg n = Ω(n lg n) [T, first one is not tight.]

12. lg lg n = lg2 n. [F, lg lg n = lg(lg n) and lg2 n is (lg n)2; two are different.]

13. In order to say f(n) = o(g(n)), is suffices to find a constant c > 0 and an integer n0 > 0 such that
0 ≤ f(n) < cg(n). [F, it should be for all constant c > 0.]

14. If f(n) = ω(g(n)), then LTn→∞
f(n)
g(n) = 0. [F, should be ∞]

15. nlg c = Θ(clg n). [T, take lg n = y, then both solves to cy]

16. Sub-linear means O(n lg n). [F, o(n)]

17. Strassen’s algorithm improves on traditional divide and conquer algorithm, because it uses small num-
ber of addition. [F, small number of multiplication.]

18. The recurrence relation for traditional divide and conquer algorithm for matrix multiplication is:
T (n) = 6T (n/2) + Θ(n). [F, 6 should be 7.]
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19. The recurrence relation for Strassen’s algorithm is: T (n) = 7T (n/2)+O(1). [F, O(1) should be Θ(n).]

20. In the above two recurrence relations, 6 and 7 stand for 6 and 7 additions respectively. [F, 6 and 7 are
for multiplications.]

21. Master method can solve any recurrence relation. [F]

22. Asymptotic bounds achieved by Master theorem are always tight. [T, all cases give Θ.]

23. T (n) = 2T (n/4) +
√

n solves to Θ(
√

n lg n). [T, case 2 of Master method.]

24. The second condition in Case 3 of Master theorem indicates that the cost of conquer should be non-
increasing. [T]

25. Master theorem can solve this recurrence: T (n) = 4T (n/2)+n2 lg n. [F, similar to the negative example
given in the book.]

26. In quick sort, two elements are compared at least once. [F, at most once.]

27. In quick sort, assuming the numbering of the elements as z1, z2, . . . , zn in their sorted sequence, the
probability of two elements zi and zj are compared is: 2

i+j+1 . [F, 2
j−i+1 ]

28. In quick sort, two elements zi and zj are compared if and only if one of them is selected as a pivot
among the elements that are within the sorted sequence of zi and zj (inclusive). [F, “selected first”]

29. Average running time and expected running time are the same. [T]

30. Running time of a quick sort algorithm with 75% − 25% balanced partitioning is O(n lg0.25 n). [F,
O(n lg4/3 n)]

31.
∑n

k=1
2
k = O(lg2 n). [F, O(lg n)]

32. A lower bound for any sorting algorithm is Ω(n lg n). [T, but not tight, e.g., Ω(n2) for insertion sort.]

33. Lower bound for sorting is Ω(n lg n). [T]

34. Ω(n) is another lower bound for sorting. [T, but not tight.]

35. lg n! ≥ lg(n/2)(n/2) = Ω(n lg n). [T]

36. To determine the minimum running time from a decision tree, we need to take the shortest path in
the tree. [F, longest path.]

37. An algorithm for a problem is asymptotically optimal when the upper bound matches the lower bound
of the algorithm. [F, should match with the lower bound of the problem.]

38. Insertion sort has running time Θ(n2), i.e., both upper and lower bounds are same as n2. Therefore,
insertion sort is an optimal sorting algorithm. [F, in the class test question, the second n2 was written
as n lg n, it was a typo, but still the answer is “F”.]

39. The leaves of a decision tree for sorting are the permutations of the elements. [T]

40. An exponential running time is infeasible. [T, because it would take too much time as n grows larger.]
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