CSE 421N: Basic Graph Theory Class Test 3, 14/10/2008 Full Marks: 20, Time:20 mins

Student No.

Name:

Write "T" for true and "F" for false for each of the following. Write in the left margin.

1.	Only bipartite graphs are 2-colorable.
r	Poterson graph is 2 colorable
۷.	[F: Petersen graph is not bipartite, so not 2-colorable; It is tri-partite, so 3-colorable]
3.	$\chi \leq \omega$.
	$[F: \chi \ge \omega]$
4.	$\chi \ge n/\omega$.
	[F: A path of much length, say 99, has $n = 100$ and $\omega = 2$, but $\chi = 2$ only]
5.	$\chi \leq \Delta + 1.$
	[T: Greedy Coloring gives this bound]
6.	The graph coloring problem is NP-complete.
	[T]
7.	It is possible to have $\chi > \omega$.
	[T: See the example in the text]
8.	$\chi \leq 1 + \max_i \min\{d_i, i - 1\}$, where d_i is the degree of a vertex v_i .
	[T: Greedy Coloring with a better sequence gives this bound]
9.	The fact that the Greedy Coloring does not always give optimum coloring is due to vertex
	sequence used in the Greedy Coloring rather than the Greedy Coloring itself.
	[T: See the text]
10.	For an interval graph $\chi = \omega$.
	[T: Greedy Coloring gives optimum coloring for interval graphs]
11.	Interval graphs are perfect.
	[T: A subset of intervals is another set of intervals]
12.	A sub graph of an interval graph is also an interval graph.
	[T: Trivially true]
13.	For any graph $\chi \neq \chi'$.
	[F: For a triangle, $\chi = \chi' = 3$]
14.	Like in vertex coloring, a Greedy Coloring for edge coloring of a graph gives an upper bound
	$\chi' \leq \Delta + 1.$
	[F: Gives an upper bound of $\chi' \le 2\Delta - 1$]
15.	$\chi' \leq \Delta + 1.$
	[T: This is the Vizing theorem]
16.	For a bipartite graph, $\chi' = \Delta$.
	[T: This is the Konig's theorem]
17.	It is possible that $\chi' = \chi$.
	[T: For a complete graph $\chi' = \chi = \Delta + 1$]
18.	Every planar graph is 5-colorable.
	[T: Since it is 4-colorable]
19.	Every planar graph is 4-colorable.
	[T: 4-color theorem]
20.	No planar graph is <i>k</i> -colorable, for $k \le 3$.
	[F: A cycle is 2- or 3-colorable]

of