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Abstract— The problem of cutting a convex polygonP out
of a piece of planar material Q with minimum total cutting
length is a well studied problem in computational geometry.
Researchers studied several variations of the problem, such
as P and Q are convex or non-convex polygons and the
cuts are line cuts or ray cuts. In this paper we consider
yet another variation of the problem where Q is a circle
and P is a convex polygon such thatP is bounded by a
half circle of Q and all the cuts are line cuts. We give two
algorithms for solving this problem. Our first algorithm is
an O(log n)-approximation algorithm with O(n) running
time, where n is the number of edges ofP . The second
algorithm is a constant factor approximation algorithm with
approximation ratio 6.48 and running time O(n3).

Index Terms— algorithms, approximation algorithms, com-
putational geometry, line cut, ray cut, polygon cutting,
rotating calipers

I. I NTRODUCTION

The problem of cutting small polygonal objects “ef-
ficiently” out of larger planar objects arises in many
industries, such as metal sheet cutting, paper cutting,
furniture manufacturing, ceramic industries, fabrication,
ornaments, and leather industries. This type of problems
are in general known asstock cutting problems[1].
Different types of cuts and different criteria for efficiency
of cutting are considered in cutting processes, mostly
depending up on the types of the materials. The two most
common types of cuts are theline cuts (i.e., guillotine
cuts) and ray cuts. A line cut is a line that cuts the
given object into several pieces and does not run through
the target object. A ray cut is a ray that runs from the
infinity to a certain point of the given object, possibly
to a boundary point of the target object. A line cut is
feasible for cutting out convex objects since it cuts an
object into many pieces below and above the cut. On the
other hand, ray cuts can be performed by many types
of saws such as scroll saw, band saw, laser saw and wire
saw [2]. Ray cuts can cut out non-convex objects too. But
at the same time they need to make turns in the cutting
process and so, needs some “clearance” for a turn, which
can make it impossible to cut an arbitrary non-convex
polygon. In particular, for applying ray cuts to a non-
convex polygon it is necessary for the polygon to have no
“twisted pockets”, i.e., part of the polygon boundary that
does not see the infinity. As a whole, a cutting process

that uses only line cuts is much simpler than that uses
only ray cuts.

In a cutting process the main criteria for “efficiency”
of cutting is to minimize the total cutting length, which
is also known as thecutting cost. While cutting a convex
polygon it may be true that the cutting cost for ray cuts are
less than that for line cuts. But due to the above simplicity
line cuts are more popular for cutting convex objects and
are well studied as well, at least theoretically [1], [3]–[9].
Moreover, it can be shown that [9] it is not always possible
to replace line cuts by ray cuts to get better cutting cost.

In this paper we consider the problem of cutting a
convex polygonP out of a circleQ by using line cuts
whereP is “much smaller” thanQ, namelyP is cornered
convexwith respect toQ. A cornered convex polygonP
inside a circleQ is a convex polygon which is positioned
completely on one side of a diameter ofQ. See Fig. 1(a).
The (cutting) cost of a line cut is the length of the
intersection of the line withQ. After a cut is made,Q is
updated to the piece containingP . A cutting sequenceis a
sequence of cuts such that after the last cut in the sequence
we haveP = Q. We give algorithms for cuttingP out
of Q by line cuts with total cutting cost of the cutting
sequence as small as possible. See Fig. 1(b). In many
applications, such as metal sheet cutting, it is natural to
have the given object as a large circular sheet and the
target object as a sufficiently smaller convex polygon.

A. Known results

If Q is another convex polygon withm edges, this
problem with line cuts has been approached in various
ways by many researchers in computational geometry
community [1], [3]–[9]. Overmars and Welzl first intro-
duced this problem in 1985 [3]. If the cuts are allowed
only along the edges ofP , they proposed anO(n3 +m)-
time algorithm for this problem with optimal cutting
length, wheren is the number of edges ofP . The problem
is more difficult if the cuts are more general, i.e., they are
not restricted to touch only the edges ofP . In that case
Bhadury and Chandrasekaran showed that the problem
has optimal solutions that lie in the algebraic extension of
the input data field [1] and due to this algebraic nature of
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Figure 1. (a) A cornered convex polygonP inside a circleQ. (b) Two different cutting sequences (bold lines) to cutP out of Q; Cutting cost of
the sequence in the left figure is more than that in the right figure.

this problem, an approximation scheme1 is the best that
one can achieve [1]. They also gave an approximation
scheme with pseudo-polynomial running time [1].

After the indication of Bhadury and Chandrasekaran [1]
to the hardness of the problem, several researchers have
given polynomial time approximation algorithms. Du-
mitrescu proposed anO(log n)-approximation algorithm
with O(mn+n log n) running time [5], [6]. Then Daescu
and Luo [7] gave the first constant factor approxima-
tion algorithm with ratio2.5 + ||Q||/||P ||, where ||Q||
and ||P || are the perimeter ofQ and P respectively.
Their algorithm has a running time ofO(n3 + (n +
m) log (n + m)). The best known constant factor approx-
imation algorithm is due to Tan [4] with an approximation
ratio of 7.9 and running time ofO(n3 + m). In the
same paper [4], the author also proposed anO(log n)-
approximation algorithm with improved running time
of O(n + m). As the best known result so far, very
recently, Bereg, Daescu and Jiang [8] gave a polynomial
time approximation scheme (PTAS) for this problem with
running timeO(m + n6

ε12 ).
For ray cuts, Demaine, Demaine and Kaplan [2] gave a

linear time algorithm to decide whether a given polygon
P is ray-cuttableor not. For optimally cuttingP out of
Q by ray cuts, ifQ is convex and ifP is non-convex
but ray-cuttable, then Daescu and Luo [7] gave an almost
linear time O(log2 n)-approximation algorithm. IfP is
convex, then they gave a linear time18-approximation
algorithm. Tan [4] improved the approximation ratio for
both cases asO(log n) and6, respectively, but with much
higher running time ofO(n3 + m).

B. Our results

All the previous results considerQ as a polygon (either
convex or non-convex). However, to our knowledge, no
algorithm is known whenQ is a circle. In this paper,
we consider the problem whereQ is a circle andP is a
cornered convex polygon insideQ. We give two approx-
imation algorithms for this problem. Our first algorithm

1A ρ-approximation algorithm(similarly, anapproximation scheme)
has a cutting length that isρ times (similarly,(1+ε) times, for any value
ε > 0) the optimal cutting length. Please refer to [10] for preliminaries
on approximation algorithms.

has an approximation ratio ofO(log n) and runs inO(n)
time. Our second algorithm has an approximation ratio of
6.48 and runs inO(n3) time.

C. Comparison of the results

While for an approximation algorithm a constant fac-
tor approximation ratio is preferable to input-dependent
approximation ratio, the linear running time of our first
algorithm is much better than the cubic running time
of our second algorithm. The ratio6.48 of our second
algorithm is better than that of7.9 of Tan’s algorithm [4]
(although the later deals withQ as a convex polygon).

When both P and Q are convex polygons, almost
all the existing algorithms on line cuts use two major
steps: cutting a minimum area rectangle or a minimum
area triangle fromQ that boundsP and then cuttingP
out of that bounding box. Our algorithms also follow
similar approach. However, we observe that the exist-
ing algorithms can not be applied directly to solve our
problem. Moreover, the running time of those algorithms
are too high compared to our algorithms. In particular,
Tan’s [4] constant factor approximation algorithm takes
O(n3 + m) time, theO(log n)-approximation algorithm
of [5], [6] takes O(mn + n log n) time and the PTAS
of Bereg et.al. [8] takesO(m + n6

ε12 ) time, wherem can
be arbitrarily large. In contrast, the running time of our
algorithms are free ofm and one of them is linear. Also
observe that in the existing algorithms, increasing the
value ofm for “approximating”Q to a circle makes them
inefficient. See TABLE I for a summary of comparisons
among the existing algorithms and our algorithms.

D. Outline

The rest of the paper is organized as follows. We give
some definitions and preliminaries in Section II. Then we
present our two algorithms in Section III and Section IV
respectively. Finally, Section V concludes the paper with
some future works.

II. PRELIMINARIES

A line cut is avertex cutthrough a vertexv of P if
it is tangent toP at v. Similarly, a line cut is anedge



Cut Type Q P Approx. Ratio Running Time Reference

Ray cuts

- Non-convex Ray-cuttable? O(n) [2]
Convex Convex 18 O(n) [7]
Convex Non-convex O(log2 n) O(n) [7]
Convex Convex 6 O(n3 + m) [4]
Convex Non-convex O(log n) O(n3 + m) [4]

Line cuts

Convex Convex O(log n) O(mn + n log n) [5], [6]
Convex Convex 2.5 + ||Q||/||P || O(n3 + (n + m) log (n + m)) [7]
Convex Convex 7.9 O(n3 + m) [4]

Convex Convex (1 + ε) O(m + n6

ε12
) [8]

Circle Cornered convex O(log n) O(n) This paper
Circle Cornered convex 6.48 O(n3) This paper

TABLE I.
COMPARISON OF THE RESULTS.

cut through an edgee of P if it containse. At any time
the edges ofP through which an edge cut has passed are
called cut edgesof P and other edges ofP are called
uncut edgesof P . To cut P out of Q all n edges ofP
must become cut edges and for that we require exactly
n edge cuts. However, applying only edge cuts may not
give an optimal solution and we need vertex cuts as well.

In the rest of this section we give some elementary
geometry that plays important role in our paper. Letc be
the center ofQ. An edgee of P is visible from c if for
every pointp of e the line segmentcp does not intersect
P in any other point. So, ife is collinear with c, then
we considere as invisible. Similarly, a vertexv of P is
visible from c if the line segmentcv does not intersectP
in any other point.

In this paper we do not consider the diameter ofQ as
a chord, i.e., a chord is always smaller than a diameter.
Let ll′ be a chord ofQ. ll′ divides Q into two circular
segments, one is bigger than a half circle and the other
one is smaller than a half circle. Lettt′ be another chord
intersectingll′ at x such thattx is in the smaller circular
segment ofll′. See Fig. 2(a). The following two lemmas
are obvious and their illustration can be found in Fig. 2.

Lemma 1:xt is no bigger thanll′.
Lemma 2:Let 4abc be an obtuse triangle with the

obtuse angle6 bac. Consider any line segment connecting
two pointsb′ and c′ on ab andac, respectively, possibly
one ofb′ andc′ coinciding withb or c respectively. Then
the angle6 bb′c′ and 6 cc′b′ are obtuse.
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Figure 2. Illustration of Lemma 1 and Lemma 2.

III. A LGORITHM 1

Our first algorithm has four phases : (1) D-separation,
(2) triangle separation, (3) obtuse phase and (4) curving
phase. InD-separation phase, we cut out a small portion
of Q (less than the half ofQ) which containsP (and
looks like a “D”). Then intriangle separation phasewe
reduce the size ofQ even more by two additional cuts and
boundP by almost a triangle. Inobtuse phasewe assure
that all the portions ofQ that are not insideP are inside
some obtuse triangles. Finally, incurving phasewe cut
P out of Q by cutting those obtuse triangles in rounds.

Let C∗ be the optimal cutting length to cutP from Q.
Clearly C∗ is at least the length of the perimeter ofP .

A. D-separation

A D of the circleQ is a circular segment ofQ which
is smaller than an half circle ofQ. By a D-separation
of P from Q we mean a line cut ofQ that creates a
D containingP . In general, for a circleQ and a convex
polygon P there may not exist any D-separation ofP .
But in our case sinceP is cornered, there always exists a
D-separation ofP . We first find a D-separation that has
minimum cutting cost.

Lemma 3:A minimum-costD-separation,C1, can be
found in O(n) time.

Proof: Clearly C1 must touchP . So,C1 must be a
vertex cut or an edge cut ofP . Observe that any vertex
cut or edge cut that is a D-separation must be through a
visible vertex or a visible edge. Lete be a visible edge
of P . Let ll′ be a line cut throughe. Let cp be the line
segment perpendicular toll′ at p. If p is a point of e,
then we calle a critical edgeof P and ll′ a critical edge
cut of P . Since P is convex, it can have at most one
critical edge. Similarly, letv be a vertex ofP and let
tt′ be a vertex cut throughv. Let cp be the line segment
perpendicular tott′ at p. If tt′ is such thatp = v, then
we call v a critical vertex of P and tt′ a critical vertex
cut of P . Again, P can have at most one critical vertex.
Moreover, P has a critical edge if and only if it does
not have a critical vertex. See Fig. 3. Now, ifP has
the critical edgee (and no critical vertex), thenC1 is
the corresponding critical edge cutll′. C1 is minimum,
because any other vertex cut or edge cut ofP is either



closer toc (and thus bigger) or does not separatec from
P . On the other hand, ifP has the critical vertexv, then
C1 is the corresponding critical vertex cuttt′ of P . Again,
C1 is minimum by the same reason.
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Figure 3. Critical edge and critical vertex.

For running time, all visible vertices and visible edges
of P can be found in linear time. Then finding whether
an edge ofP is critical takes constant time. Over all
edges finding the critical edge, if it exists, takesO(n)
time. Similarly, for each visible vertexv we can check in
constant time whetherv is critical or not by comparing
the angles ofcv with two adjacent edges ofv, which takes
constant time. Over all visible vertices, it takes linear
time.

Lemma 4:Cost ofC1 is at mostC∗.
Proof: Consider any optimal cutting sequenceC with

cutting costC∗. C must separateP from c. However, it
may do that by using a single cut (Case 1) or by using
more than one cut (Case 2). In Case 1, if it uses a single
cut then it is in fact doing a D-separation. By Lemma 3,
it can not do better thanC1, and therefore, cost ofC1 is
at mostC∗.

In Case 2, there are several sub-cases. We will prove
that in any case the cutting cost of separatingP from c is
even higher than that for a single cut. LetC be the first
cut in C that separatesc from P . C can not be the very
first cut ofC, otherwise, it is doing a D-separation and we
are in Case 1. It implies thatC is not a (complete) chord
of Q. For the rest of the proof please refer to Fig. 4. Let
a anda′ be the two end points ofC. Let bb′ be the chord
of Q that containsaa′ whereb is closer toa than toa′. At
least one ofa anda′ is not incident on the boundary of
Q. We first assume thata is not incident to the boundary
of Q but a′ is (Case 1a). LetCx = xx′ be the cut that
was applied immediately beforeC and intersectsC at a.
SinceCx does not separatec from P , the bigger circular
segment created byCx containsP , c anda. Now if x′ is
an end point ofCx, then by Lemma 1ab is smaller than
xx′. It implies that havingCx in addition toC1 increases
the cost of separatingP from c (see Fig. 4(a)). Similarly,
if x′ is not an end point ofCx, and thus another cut is
involved, then by Lemma 1 the cost will be even more
(see Fig. 4(b)).

Now consider the case when botha and a′ are not
incident on the boundary ofQ (Case 1b). So at least two
cuts are required to separateab and a′b′ from bb′. Let
those two cuts beCx and Cy respectively. Letxx′ and

yy′ be the two chords ofQ along whichCx andCy are
applied. Now ifCx andCy do not intersect, then for each
of them by applying the argument of Case 1a we can say
that the cutting cost is no better than that for a single
cut. But handling the case whenCx and Cy intersect is
not obvious (see Fig. 4(c, d)). Letz′ be their intersection
point. Again, there may be several sub-cases:x andy may
or may not be end points ofCx andCy. Assume that both
x andy are end points ofCx andCy. Remember that none
of Cx andCy separatesP from c. So, the region bounded
by xz′y must containP and c inside of it. In that case
the total length ofxz′ andyz′ is at least the diameter of
Q, which is bigger thanbb′ (see Fig. 4(c)). For the other
cases, where at least one ofx andy is not an end point
of Cx and Cy, respectively, by Case 1a the cost is even
more (for example, see Fig. 4(d)).

B. Triangle separation

In this phase we apply two more cutsC2 andC3 and
“bound” P inside a “triangle”. From there we achieve
three triangles inside which we bound the remaining uncut
edges ofP . (In the D-separation phase, at most one edge
of P becomes cut).

Let C1 = aa′ be the cut applied during the D-
separation. We apply two cutsC2 = at and C3 = a′t′

such that both of them are also tangents toP . If C2 and
C3 intersect (insideQ or on the boundary ofQ), then
let z be the intersection point (see Fig. 5(a)), otherwise
let z be the point outsideQ where the extensions ofC2

and C3 intersect (see Fig. 5(b)). We get three resulting
trianglesTa, Ta′ , Tz having a, a′ and z, respectively, as
a peak. We only describe how to getTa; description for
Ta′ andTz are analogous. IfC1 is an edge cut, then let
rr′ be the corresponding edge such thata is closer tor
than tor′ (see Fig. 5(a)). IfC1 is a vertex cut, then let
r be the corresponding vertex ofP . Let s be the similar
vertex due toC2 (see Fig. 5(b)). ThenTa = 4ars. The
polygonal chain ofP boundedby Ta is the edges from
r to s that reside insideTa.

Lemma 5:Total cost ofC2 andC3 to achieveTa, Ta′

andTz is at most2C∗. Moreover,C2 andC3 can be found
in linear time.

Proof: Whether z is within Q or outsideQ, the
length of at and a′t′ can not be more than twice the
length of aa′. By Lemma 3,aa′ is no more thanC∗.
Therefore, the total cost ofC2 andC3 is at most2C∗.

To find at linearly, we can simply scan the boundary
of P starting from the vertex or edge whereaa′ touches
P and check in constant time whether a tangent ofP
is possible through that vertex or edge. Similarly we can
find a′t′ within the same time.

C. Obtuse phase

Consider the triangleTa = 4ars obtained in the
previous phase. We call the vertexa the peakof Ta and
the edgers the baseof Ta. Observe that the angle ofTa

at a is acute. Similarly, the angle ofTa′ at its peaka′ is
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also acute. However, the angle ofTz at its peakz may
be acute or obtuse.

For each ofTa, Ta′ and Tz (if Tz is acute) we apply
a cut and obtain one or two triangles such that the
angle at their peaks are obtuse and they jointly bound
the polygonal chain of the corresponding triangle. We
describe the construction of the triangle(s) obtained from
Ta only; description for the triangles obtained fromTa′

andTz are analogous.
Please refer to Fig. 6. LetPa be the polygonal chain

bounded byTa. Length ofar andas may not be equal.
W.l.o.g. assume thatas is not larger thanar. Let s′ be the
point on ar such that length ofas′ equals to the length
of as. Connectss′ if s′ is different fromr. We will find
a line segment insideTa such that it is tangent toPa and
is parallel toss′. We have two cases: (i)ss′ itself is a
tangent toPa, and (ii) ss′ is not a tangent toPa.

Case (i): Ifss′ itself is tangent toPa (at s), we apply
our cut alongss′. This cut may be a vertex cut through
s or an edge cut through the edge ofPa that is incident
to s. If it is a vertex cut then we get the resulting obtuse
triangle4rss′ and the polygonal chain bounded by this
triangle is same asPa (see Fig. 6(a)). On the other hand,
if the cut is an edge cut, letu be the other vertex of the
cut edge. Then our resulting obtuse triangle is4rus′ and
the polygonal chain bounded by this triangle is the edges

from r to u (see Fig. 6(b)). Sinceas andas′ are of same
length, in either case the triangle4rss′ or 4rus′ has
obtuse angle ats′.

Case(ii): For this case, letu, u′ be two points onas
and ar, respectively, such thatuu′ is tangent ofPa and
is parallel to ss′. We apply the cut alonguu′. Again,
this cut may be a vertex cut or an edge cut. If it is a
vertex cut, letg be the vertex of the cut. Then we get
two obtuse triangles4ru′g and4sug and the polygonal
chains bounded by them are the sets of edges fromr to g
and fromg to s respectively (see Fig. 6(c)). If it is an edge
cut, then letgg′ be the edge of the edge cut withu being
closer tog than tog′. Then we get two obtuse triangles
4ru′g′ and4sug and the polygonal chains bounded by
them are the sets of edges fromr to g′ and fromg to s
respectively (see Fig. 6(d)). Again, sinceau andau′ are
of same length, in either case the pair of triangles have
obtuse angles atu andu′ respectively.

Lemma 6:Total cost of obtaining obtuse triangles from
Ta, Ta′ , and Tz is at mostC∗. Moreover, they can be
found in O(log n) time.

Proof: Consider the construction of the obtuse
triangle(s) fromTa. Length of the cutss′ or uu′ is at
most the length ofrs, which is bounded by the length
of Pa. Over all three trianglesTa, Ta′ and Tz, the total
cutting length is bounded by the length of the perimeter
of P . SinceC∗ is at least the length of the perimeter of
P , the first part of the lemma holds.

For running time, inTa, we can find the tangent ofPa

in O(log |Pa|) time by using a binary search, where|Pa|
is the number of edges inPa. Therefore, over all three
trianglesTa, Ta′ andTz, we need a total ofO(log n) time.

D. Curving phase

After the obtuse phase the edges ofP that are not
yet cut are partitioned and bounded into polygonal chains
with at most six obtuse triangles. In this phase we apply
the cuts in rounds until all edges ofP are cut. Our cutting
procedure is same for all obtuse triangles and we describe
for only one.

Let Tu = 4gus with peaku and basegs be an obtuse
triangle. (See Fig. 7). Let the polygonal chain bounded by
Tu be Pu. Let the edges ofPu be e1, . . . , ek with k ≥ 2.
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We shall apply cuts in rounds and all cuts will be edge
cuts. In the first round we apply an edge cutC ′ along
the edgeek/2. Then we connectg and s with the two
end points ofek/2 to get two disjoint triangles. SinceTu

is obtuse, by Lemma 2 these two new triangles are also
obtuse. In the next round we work on each of these two
triangles recursively and continue until all edges ofPu

are cut.

Tu

u

ek/2

g s

Figure 7. Curving phase

Lemma 7: In curving phase, to cut all edges ofPu

there can be at mostO(log k) rounds of cuts. Moreover,
the total cost of these cuts is|Pu| log k, where|Pu| is the
number of edges ofPu, and the running time isO(|Pu|).

Proof: At each round the number of triangles get
doubled and the number of edges that become cut also
get doubled. So afterlog k rounds allk edges are cut.

Let the length ofPu be Lu. At each round the total
length of the bases plus the length of the edges that are
being cut is no more thanLu. So, the total cutting cost
is Lu log k over all rounds.

For running time, finding the edgeek/2 takes constant
time. Moreover, once an edge becomes cut, it will not be
considered for an edge cut again. So, there can be at most
|Pu| edge cuts, which gives a running time ofO(|Pu|).

Corollary 1: Total cutting cost of curving phase is
C∗ log n and the running time isO(n).

Proof: Over all six obtuse triangles
∑

Lu is no more
than the perimeter ofP , which is bounded byC∗, and∑ |Pu| = n. Therefore, for all six triangles, the total cost
is at most

∑
Lu log k = C∗ log n and running time is

O(
∑ |Pu|) = O(n).
Combining the results of all four phases, we get the

following theorem.
Theorem 1:Given a circleQ and a cornered convex

polygonP within Q, P can be cut out ofQ by using line
cuts inO(n) time with a cutting cost ofO(log n) times
the optimal cutting cost.

IV. A LGORITHM 2

In this section we present our second algorithm which
cuts P out of Q with a constant approximation ratio of
6.48 and running time ofO(n3). This algorithm has three
phases: (1) D-separation, (2) cutting out a minimum area
rectangle that boundsP and (3) cuttingP out of that
rectangle by only edge cuts.

The D-separation phase is same as that of our first
algorithm and we assume that this phase has been applied.

A. Cutting a minimum area bounding rectangle

We will use the technique of rotating calipers, which
is a well known concept in computational geometry and
was first introduced by Toussaint [11]. We use the method
described by Toussaint [11].

A pair rotating calipers remain in parallel. It rotate
along the boundary of an object with two calipers being
tangents to the object. If the object is a convex polygon
P , then one fixed caliper, which we call thebase caliper,
is tangent along an edgee of P and the other caliper is
tangent to a vertex or an edge ofP . In the next step of the
rotation, the base caliper moves to the next edge adjacent
to e and continue. The rotation iscompletewhen the base
caliper has encountered all edges ofP .

For our case we use two pairs of rotating calipers,
where one pair is orthogonal to the other. We fixed only
one caliper, among the four, as the base caliper. As we
rotate along the boundary ofP , we always place the
base caliper along an edge ofP and adjust other three
calipers as the tangents ofP . The four calipers give us a
bounding rectangle ofP . After the rotation is complete,
we identify the minimum area rectangle among then
bounding rectangles. For that rectangle we apply one cut



along each of its edges that are not collinear with the
chord of the D.

The above technique can be done inO(n) time [11].
Once the base calipers is placed along an edge, the other
three calipers are also rotated and adjusted to make them
tangent toP . Notice that each caliper “traverses” an edge
or a vertex exactly once.

P=⇒P

Figure 8. Rotating two pairs of orthogonal calipers. The broken lines
are the total cutting cost of this phase.

Lemma 8:The cost of cutting a minimum area rectan-
gle out of the D achieved from the D-separation phase is
no more than2.57C∗.

Proof: There can be at most four pieces, other than
the one inside the bounding rectangle, resulting from four
cuts applied to the D. The length of each cut is no more
than the portion of the perimeter of D that is separated by
that cut. So, as a whole the total cutting cost is no more
than the perimeter of D. Also see Fig. 8

Now the perimeter of D isCD + Rθ, where CD is
the length of the chord of D andθ is the angle made by
the arc of D at the centerc. SinceCD is the cost of D-
separation, which by Lemma 4 is bounded byC∗, θ is at
mostπ, andC∗ can not be more than2R, the maximum
perimeter of D isC∗ + (C∗/2)π = 2.57C∗.

B. Cutting P out of a minimum area rectangle by only
edge cuts

For this phase we simply apply the constant factor
approximatoin algorithm of Tan [4]. IfP is bounded by a
minimum area rectangle, then Tan’s algorithm cutsP out
of the rectangle by using only edge cuts inO(n3) time
and with approximation ratio(1.5 +

√
2) [4].

We summerize the result of our second algorithm in
the following theorem.

Theorem 2:Given a circleQ and a cornered convex
polygonP of n edges withinQ, P can be cut out ofQ
by using line cuts inO(n3) time with a cutting cost of
6.48 times the optimal cutting cost.

Proof: We have the cutting cost ofC∗ for D-
Separation,2.57C∗ for cutting the minimum area rectan-
gle, and(1.5+

√
2)C∗ for cuttingP out of the rectangle,

which give a total cost of6.48C∗.

V. CONCLUSION

In this paper we have given two algorithms for cutting
a convex polygonP out of a circleQ by using line cuts
whereP resides in one side of a diameter ofQ. Our first
algorithm is anO(log n)-approximation algorithm with
O(n) running time, wheren is the number of edges ofP .
Our second algorithm is a6.48-approximation algorithm
with running timeO(n3).

While there exist several algorithms whenQ is another
polygon, we are the first to address the problem whereQ
is a circle. Our first algorithm has a better running time
and the second one has better approximation ratio than
the best known previous algorithms that deal withQ as
a convex polygon.

There remain several open problems and directions for
future research:

1) The general case of this problem whereP is not
necessarily in one side of a diameter ofQ is still
to be solved.

2) We also think it would be interesting to see approx-
imation schemes for this problem.

3) Finally, in many industry applications it is common
to have bothP andQ as 3D objects, for which we
do not know any algorithm. In future it is important
to design similar algorithms for the 3D case.
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