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Abstract—The problem of cutting a convex polygonP out  that uses only line cuts is much simpler than that uses
of a piece of planar material @ with minimum total cutting only ray cuts.

length is a well studied problem in computational geometry. - - o P "
Researchers studied several variations of the problem, such In a_ Cut'_tlng pro_c_es_s the main Crlter_la for efﬂClen_cy
as P and Q are convex or non-convex po|ygons and the of Cutt|ng is to minimize the total Cutt|ng Iength, which
cuts are line cuts or ray cuts. In this paper we consider is also known as theutting cost While cutting a convex

yet another variation of the problem where @ is a circle  polygon it may be true that the cutting cost for ray cuts are
and P is a convex polygon such thatP is bounded by a |agq than that for line cuts. But due to the above simplicity

half circle of @ and all the cuts are line cuts. We give two i ¢ lar f ti biect d
algorithms for solving this problem. Our first algorithm is Ine cuts are more popular for cutting convex objects an

an O(logn)-approximation algorithm with O(n) running  are well studied as well, at least theoretically [1], [3]-{9].
time, where n is the number of edges of P. The second Moreover, it can be shown that [9] it is not always possible

algorithm is a constant factor approximation algorithm with o replace line cuts by ray cuts to get better cutting cost.

; ; ; ; ; 3
approximation rat'0_6‘48 and run-mng.nme 0(7_1 ) In this paper we consider the problem of cutting a
Index Terms—algorithms, approximation algorithms, com-  convex polygonP out of a circle@Q by using line cuts
putational geometry, line cut, ray cut, polygon cutting, whereP is “much smaller” tharQ, namelyP is cornered
rotating calipers . '

convexwith respect toQ. A cornered convex polygoR
inside a circleQ is a convex polygon which is positioned
|. INTRODUCTION completely on one side of a diameter@f See Fig. 1(a).
, . .. The (cutting) costof a line cut is the length of the
~ The problem of cutting small polygonal objects “ef- jyiarsection of the line with). After a cut is madeq is
ficiently” out of larger planar objects arises in many updated to the piece containidg A cutting sequencts a

industries, such as metal sheet cutting, paper cutlingeqence of cuts such that after the last cut in the sequence
furniture manufacturing, ceramic industries, fabncanon,we haveP = (. We give algorithms for cutting? out

ornaments, and leather industries. This type of problemgf Q by line cuts with total cutting cost of the cutting

are in general known astock cutting problemql].  geqience as small as possible. See Fig. 1(b). In many
Different types of cuts and different criteria for efficiency g jications, such as metal sheet cutting, it is natural to
of cutting are considered in cutting processes, mostly\5ye the given object as a large circular sheet and the

depending up on the types of the materials. The two mosk,yet ghject as a sufficiently smaller convex polygon.
common types of cuts are tHme cuts (i.e., guillotine

cut9 and ray cuts A line cut is a line that cuts the

given object into several pieces and does not run through

the target object. A ray cut is a ray that runs from theA. Known results

infinity to a certain point of the given object, possibly

to a boundary point of the target object. A line cut is If @ is another convex polygon withw edges, this
feasible for cutting out convex objects since it cuts anproblem with line cuts has been approached in various
object into many pieces below and above the cut. On the&vays by many researchers in computational geometry
other hand, ray cuts can be performed by many typesommunity [1], [3]-[9]. Overmars and Welzl first intro-
of saws such as scroll saw, band saw, laser saw and widkced this problem in 1985 [3]. If the cuts are allowed
saw [2]. Ray cuts can cut out non-convex objects too. Bubnly along the edges d?, they proposed a®(n? +m)-

at the same time they need to make turns in the cuttingjme algorithm for this problem with optimal cutting
process and so, needs some “clearance” for a turn, whidength, where: is the number of edges @f. The problem
can make it impossible to cut an arbitrary non-convexis more difficult if the cuts are more general, i.e., they are
polygon. In particular, for applying ray cuts to a non- not restricted to touch only the edges Bf In that case
convex polygon it is necessary for the polygon to have ndhadury and Chandrasekaran showed that the problem
“twisted pockets”, i.e., part of the polygon boundary thathas optimal solutions that lie in the algebraic extension of
does not see the infinity. As a whole, a cutting processhe input data field [1] and due to this algebraic nature of
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Figure 1. (a) A cornered convex polygdn inside a circle@. (b) Two different cutting sequences (bold lines) to ¢ubut of Q; Cutting cost of
the sequence in the left figure is more than that in the right figure.

this problem, an approximation schefrie the best that has an approximation ratio @?(log») and runs inO(n)
one can achieve [1]. They also gave an approximatiotime. Our second algorithm has an approximation ratio of
scheme with pseudo-polynomial running time [1]. 6.48 and runs inO(n?) time.

After the indication of Bhadury and Chandrasekaran [1]
to the hardness of the problem, several researchers hage comparison of the results
given polynomial time approximation algorithms. Du-
mitrescu proposed a@®(logn)-approximation algorithm
with O(mn+nlogn) running time [5], [6]. Then Daescu
and Luo [7] gave the first constant factor approxima-
tion algorithm with ratio2.5 + [|Q||/||P||, where |[|Q]]
and ||P|| are the perimeter of) and P respectively.
Their algorithm has a running time a®(n® + (n +
m)log (n +m)). The best known constant factor approx-
imation algorithm is due to Tan [4] with an approximation
ratio of 7.9 and running time ofO(n® + m). In the
same paper [4], the author also proposed(¥tog n)-
approximation algorithm with improved running time
of O(n + m). As the best known result so far, very
recently, Bereg, Daescu and Jiang [8] gave a polynomi

While for an approximation algorithm a constant fac-
tor approximation ratio is preferable to input-dependent
approximation ratio, the linear running time of our first
algorithm is much better than the cubic running time
of our second algorithm. The rati.48 of our second
algorithm is better than that §t9 of Tan’s algorithm [4]
(although the later deals witfy as a convex polygon).

When both P and @Q are convex polygons, almost
all the existing algorithms on line cuts use two major
steps: cutting a minimum area rectangle or a minimum
area triangle from) that boundsP and then cuttingP
out of that bounding box. Our algorithms also follow
a?imilar approach. However, we observe that the exist-
time approximation scheme (PTAS) for this problem with"9 algorithms can not be a.pp“ed directly to SON? our

problem. Moreover, the running time of those algorithms

rur;gp?atlz]sg(ge;gi;)é Demaine and Kaplan [2] gave are too high compared to our algorithms. In particular,
y ' ' P 9 Fan's [4] constant factor approximation algorithm takes

linear time algorithm to decide whether a given polygon ., "5 . . .
; ) ) . O(n° 4+ m) time, the O(logn)-approximation algorithm
P is ray-cuttableor not. For optimally cuttingP out of of [5], [6] takes O(mn + nlog ”5) time and the PTAS

Q by ray cuts, if@ is convex and ifP is non-convex nb o\
but ray-cuttable, then Daescu and Luo [7] gave an almosgf Bergg eF.aI. [8] take®)(m + 7) time, \_Nhergm can
e arbitrarily large. In contrast, the running time of our

linear time O(log® n)-approximation algorithm. IfP is . Lo
convex, then they gave a linear tini&-approximation algorithms are free ofn <_':1n_d one of _them IS Imear._AIso
observe that in the existing algorithms, increasing the

algorithm. Tan [4] improved the approximation ratio for value ofm for “approximating”() to a circle makes them
both cases ag(log n) andg, respectively, but with much inefficient. See TABLE | for a summary of comparisons

) A 3
higher running time o0 (n” + m). among the existing algorithms and our algorithms.

B. Our results

D. Outline
All the previous results considé} as a polygon (either . . .
convex or non-convex). However, to our knowledge, no The rest of the paper is organized as follows. We give
algorithm is known whenQ is a 'circle In this papér some definitions and preliminaries in Section Il. Then we
we consider the problem whet@ is a ci.rcle andP is a " present our two algorithms in Section Il and Section IV

cornered convex polygon insidg. We give two approx- respectively. Finally, Section V concludes the paper with
imation algorithms for this problem. Our first algorithm some future works.

1A p-approximation algorithm(similarly, anapproximation scheme II. PRELIMINARIES

has a cutting length that jstimes (similarly,(1+¢) times, for any value . . .
¢ > 0) the optimal cutting length. Please refer to [10] for preliminaries A line cut is avertex cutthrough a vertexy of P if

on approximation algorithms. it is tangent toP at v. Similarly, a line cut is anedge



Cut Type Q P Approx. Ratio Running Time Reference
- Non-convex Ray-cuttable? O(n) [2]
Convex Convex 18 O(n) [7]
Ray cuts | Convex Non-convex O(log?n) O(n) [7]
Convex Convex 6 O(n3 +m) 4]
Convex Non-convex O(logn) O(n3 +m) [4]
Convex Convex O(logn) O(mn + nlogn) [5], [6]
Convex Convex 2.5 + [[QNI/TIPIl | O(n®+ (n + m)log (n + m)) [7]
Line cuts |_Convex Convex 7.9 O(n3 +m) 4
Convex Convex (1+¢€) O(m + 57) [8]
Circle | Cornered convex O(log n) O(n) This paper
Circle | Cornered convex 6.48 O(n?) This paper
TABLE I.

COMPARISON OF THE RESULTS

cut through an edge of P if it containse. At any time [1l. ALGORITHM 1
the edges of” through which an edge cut has passed are o first algorithm has four phases : (1) D-separation,

called cut edgesof P and other edges of are called () yriangle separation, (3) obtuse phase and (4) curving

uncut edgef P. To cut P out of @ all n edges ofP  hhase InD-separation phasewe cut out a small portion
must become cut edges and for that we require exactlys Q (less than the half of)) which containsP (and

n edge cuts. However, applying only edge cuts may Nof,oks Jike a “D”). Then intriangle separation phaseve

give an optimal solution and we need vertex cuts as Well.oq,,ce the size af) even more by two additional cuts and

In the rest of this section we give some elementaryhound P by almost a triangle. Imbtuse phaseve assure
geometry that plays important role in our paper. téfe  that all the portions of) that are not insideP are inside
the center ofQ. An edgee of P is visible from c if for  some obtuse triangles. Finally, Turving phasewe cut
every pointp of ¢ the line segmentp does not intersect p out of Q by cutting those obtuse triangles in rounds.
P in any other point. So, ik is collinear withe, then Let C* be the optimal cutting length to cu? from Q.

we considere as invisible. S|m||ar|y, a vertex of P is C|ear|y C* is at least the |ength of the perimeterBf
visible from ¢ if the line segmentv does not intersecP

in any other point.

In this paper we do not consider the diameter(bhs
achord i.e., a chord is always smaller than a diameter. A D of the circleQ is a circular segment af) which
Let I’ be a chord ofQ. iI’ divides Q into two circular 1S smaller than an half circle of). By a D-separation
segments, one is bigger than a half circle and the othe&?f P from @ we mean a line cut ofp that creates a
one is smaller than a half circle. Let be another chord D containingP. In general, for a circl&) and a convex
intersectingl’ at z such thattz is in the smaller circular Polygon P there may not exist any D-separation Bf
segment ofl’. See Fig. 2(a). The following two lemmas But in our case sinc# is cornered, there always exists a
are obvious and their illustration can be found in Fig. 2.D-separation ofP. We first find a D-separation that has

Lemma 1:zt is no bigger tharil’. minimum cu.tting cost. _
Lemma 2:Let Aabc be an obtuse triangle with the Lemma 3:A minimum-costD-separation(;, can be

obtuse angle’bac. Consider any line segment connectingfound nO(n) time.

two pointsd’ andc¢’ on ab andac, respectively, possibly . Prooz: Clearlyd01 muts;mg:SP : So’tﬁlthSt beta
one of’ andc¢’ coinciding withb or ¢ respectively. Then vertex cut or an edge cut ar. Observe that any vertex
the angle/bb'¢’ and /et are obtuse. cut or edge cut that is a D-separation must be through a

visible vertex or a visible edge. Let be a visible edge
of P. Letll’ be a line cut througle. Let ¢p be the line
segment perpendicular t’ at p. If p is a point ofe,
then we calle a critical edgeof P andll’ a critical edge
b cut of P. Since P is convey, it can have at most one
/ critical edge. Similarly, letv be a vertex ofP and let
b’ tt’ be a vertex cut through. Let cp be the line segment
b perpendicular tat’ at p. If ¢’ is such thatp = v, then
g we call v a critical vertexof P andtt’ a critical vertex
cut of P. Again, P can have at most one critical vertex.
Moreover, P has a critical edge if and only if it does
not have a critical vertex. See Fig. 3. Now, f has
the critical edgee (and no critical vertex), ther; is
the corresponding critical edge clit. C; is minimum,
because any other vertex cut or edge cutPofs either

A. D-separation

@ (b)

Figure 2. lllustration of Lemma 1 and Lemma 2.



closer toc (and thus bigger) or does not separatiom
P. On the other hand, i has the critical vertex, then
C is the corresponding critical vertex ctit of P. Again,
C1 is minimum by the same reason.

Figure 3. Critical edge and critical vertex.

For running time, all visible vertices and visible edges

yy' be the two chords of) along whichC, andC,, are
applied. Now ifC,, andC), do not intersect, then for each
of them by applying the argument of Case la we can say
that the cutting cost is no better than that for a single
cut. But handling the case whefi, and C, intersect is
not obvious (see Fig. 4(c, d)). Let be their intersection
point. Again, there may be several sub-casesndy may

or may not be end points @f, andC,.. Assume that both

x andy are end points of’; andC,. Remember that none
of C, andC, separate$’ from c. So, the region bounded
by zz'y must containP and ¢ inside of it. In that case
the total length ofrz’ andyz’ is at least the diameter of
Q, which is bigger tharbt’ (see Fig. 4(c)). For the other
cases, where at least one ofandy is not an end point
of C, and C,, respectively, by Case la the cost is even
more (for example, see Fig. 4(d)). [ ]

of P can be found in linear time. Then finding whether B. Triangle separation

an edge ofP is critical takes constant time. Over all

edges finding the critical edge, if it exists, takégn)

time. Similarly, for each visible vertex we can check in
constant time whethes is critical or not by comparing
the angles ofv with two adjacent edges af which takes

constant time. Over all visible vertices, it takes linear

time.
Lemma 4:Cost of C; is at mostC™*.
Proof: Consider any optimal cutting sequeraith
cutting costC*. C must separatd from c. However, it

In this phase we apply two more cut$ andC'3 and
“bound” P inside a “triangle”. From there we achieve
three triangles inside which we bound the remaining uncut
edges ofP. (In the D-separation phase, at most one edge
of P becomes cut).

Let ¢y aa’ be the cut applied during the D-
separation. We apply two cutS; = at and C5 = a't’
such that both of them are also tangentd*tolf Cs and
Cj3 intersect (inside) or on the boundary of)), then
let z be the intersection point (see Fig. 5(a)), otherwise

may do that by using a single cut (Case 1) or by usinget ; pe the point outside) where the extensions af;
more than one cut (Case 2). In Case 1, if it uses a singlgnd C; intersect (see Fig. 5(b)). We get three resulting
cut then it is in fact doing a D-separation. By Lemma 3,yjangles7,, 7., 7, having a,a’ and z, respectively, as

it can not do better than';, and therefore, cost af; is
at mostC™.

a peak. We only describe how to g&t; description for
T, and T, are analogous. I€; is an edge cut, then let

In Case 2, there are several sub-cases. We will provg,’ pe the corresponding edge such thas closer tor

that in any case the cutting cost of separatihffom c is
even higher than that for a single cut. L&tbe the first
cut in C that separates from P. C' can not be the very

than tor’ (see Fig. 5(a)). IfC; is a vertex cut, then let
r be the corresponding vertex &f. Let s be the similar
vertex due toCy (see Fig. 5(b)). The, = Aars. The

first cut OfC, OtherW|Se, itis dOIng a D'Separa“On and we polygonal Chaln ofP boundedby Ta |S the edges from

are in Case 1. It implies that is not a (complete) chord

of Q. For the rest of the proof please refer to Fig. 4. Let

a anda’ be the two end points af'. Let bb’ be the chord
of ) that containsia’ whereb is closer toa than toa’. At
least one ofa anda’ is not incident on the boundary of
Q. We first assume that is not incident to the boundary
of Q butd’ is (Case 1a). LeC, = zx’ be the cut that
was applied immediately befox@ and intersectg’ at a.
SinceC,, does not separatefrom P, the bigger circular
segment created by, containsP, ¢ anda. Now if 2’ is
an end point ofC,, then by Lemma kb is smaller than
zz'. It implies that having”,, in addition toC; increases
the cost of separating from ¢ (see Fig. 4(a)). Similarly,
if ' is not an end point of”,, and thus another cut is

r to s that reside insiddg,.

Lemma 5:Total cost ofCo and C5 to achieveTl,, T,
andT, is at most2C*. Moreover,C> andC3 can be found
in linear time.

Proof: Whetherz is within @ or outside(@, the
length of at and a’t’ can not be more than twice the
length of aa’. By Lemma 3,aa’ is no more thanC*.
Therefore, the total cost af';, and C5 is at most2C*.

To find at linearly, we can simply scan the boundary
of P starting from the vertex or edge whege’ touches
P and check in constant time whether a tangentrof
is possible through that vertex or edge. Similarly we can
find a’t’ within the same time. [ ]

involved, then by Lemma 1 the cost will be even more

(see Fig. 4(h)).

Now consider the case when bothand «’ are not
incident on the boundary a (Case 1b). So at least two
cuts are required to separaté and a’d’ from bb'. Let
those two cuts b&, and C, respectively. Letzz’ and

C. Obtuse phase

Consider the trianglerly, Aars obtained in the
previous phase. We call the vertexthe peakof T, and
the edgers the baseof T,. Observe that the angle @,
at a is acute. Similarly, the angle d&f,, at its peaka’ is
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Figure 4. Separating from ¢ by using more than one cut. Bold lines represent the cutting cost.

from r to u (see Fig. 6(b)). Sinces andas’ are of same
length, in either case the trianglarss’ or Arus’ has
obtuse angle at'.

Case(ii): For this case, lat,«’ be two points onas
and ar, respectively, such thatu’ is tangent ofP, and
is parallel toss’. We apply the cut alongw’. Again,
this cut may be a vertex cut or an edge cut. If it is a
vertex cut, letg be the vertex of the cut. Then we get
two obtuse triangleg\ru’g and Asug and the polygonal
chains bounded by them are the sets of edges fréoy
and fromg to s respectively (see Fig. 6(c)). If it is an edge
cut, then letgg’ be the edge of the edge cut withbeing
closer tog than tog’. Then we get two obtuse triangles
@) (b) Arv'g’ and Asug and the polygonal chains bounded by
them are the sets of edges fronto ¢’ and fromg to s
respectively (see Fig. 6(d)). Again, sinee andau’ are
of same length, in either case the pair of triangles have
obtuse angles at andu’ respectively.
also acute. However, the angle 6f at its peakz may Lemma 6: Total cost of obtaining obtuse triangles from
be acute or obtuse. T,,T,, and T, is at mostC*. Moreover, they can be

For each ofT,, T, andT. (if T, is acute) we apply found inO(logn) time.
a cut and obtain one or two triang'es such that the PrOOf: Consider the COHStI’UCtiOﬂ Of the Obtuse
angle at their peaks are obtuse and they jointly boundfiangle(s) fromT,. Length of the cutss’ or uu’ is at
the polygonal chain of the corresponding triangle. Wemost the length of-s, which is bounded by the length
describe the construction of the triangle(s) obtained fron®f F.. Over all three triangleqy,, 7, and T, the total
T, only; description for the triangles obtained frafy, ~ cutting length is bounded by the length of the perimeter

Figure 5. Triangle separation.

andT, are analogous. of P. SinceC* is at least the length of the perimeter of
Please refer to Fig. 6. LeB, be the polygonal chain £ the first part of the lemma holds.
bounded byT},. Length ofar andas may not be equal. _ FOr running time, ir7;,, we can find the tangent df,

W.l.0.g. assume thais is not larger thamr. Let s’ be the 1N O(log |Fal) time by using a binary search, whe, |
point onar such that length ofis’ equals to the length 1S the number of edges i®,. Therefore, over aII_three
of as. Connectss’ if s is different fromr. We will find  trianglesT,, 7., andT’, we need a total oD (log n) time.
a line segment insid&,, such that it is tangent t&, and u
is parallel toss’. We have two cases: (s’ itself is a
tangent toP,, and (i) ss’ is not a tangent td>,. D. Curving phase

Case (i): Ifss’ itself is tangent taP, (at s), we apply After the obtuse phase the edges Bfthat are not
our cut alongss’. This cut may be a vertex cut through yet cut are partitioned and bounded into polygonal chains
s or an edge cut through the edge Bf that is incident with at most six obtuse triangles. In this phase we apply
to s. If it is a vertex cut then we get the resulting obtusethe cuts in rounds until all edges &fare cut. Our cutting
triangle Arss’ and the polygonal chain bounded by this procedure is same for all obtuse triangles and we describe
triangle is same a¥, (see Fig. 6(a)). On the other hand, for only one.
if the cut is an edge cut, let be the other vertex of the  Let T, = Agus with peaku and basgs be an obtuse
cut edge. Then our resulting obtuse trianglé\isus’ and  triangle. (See Fig. 7). Let the polygonal chain bounded by
the polygonal chain bounded by this triangle is the edge&’, be P,. Let the edges of’, beey, ..., e with k > 2.



@ (b) (0) (d)

Figure 6. Obtaining obtuse triangle(s) frof .

We shall apply cuts in rounds and all cuts will be edgeO(}_ |P.|) = O(n). [ |
cuts. In the first round we apply an edge ciit along Combining the results of all four phases, we get the
the edgee,,. Then we connect and s with the two  following theorem.

end points ofe;, ), to get two disjoint triangles. Sincg, Theorem 1:Given a circle) and a cornered convex

is obtuse, by Lemma 2 these two new triangles are alspolygon P within @, P can be cut out of) by using line
obtuse. In the next round we work on each of these tweuts inO(n) time with a cutting cost oD (logn) times
triangles recursively and continue until all edges/f the optimal cutting cost.

are cut.

IV. ALGORITHM 2

In this section we present our second algorithm which
cuts P out of @ with a constant approximation ratio of
6.48 and running time o (n?). This algorithm has three
€k/2 phases: (1) D-separation, (2) cutting out a minimum area
T rectangle that bound® and (3) cuttingP out of that
. rectangle by only edge cuts.
T, The D-separation phase is same as that of our first
algorithm and we assume that this phase has been applied.

Figure 7. Curving phase

A. Cutting a minimum area bounding rectangle

Lemma 7:In curving phase, to cut all edges @, We will use the technique of rotating calipers, which
there can be at mogP(log k) rounds of cuts. Moreover, s a well known concept in computational geometry and
the total cost of these cuts [i&,|log k, where|P,| is the  was first introduced by Toussaint [11]. We use the method
number of edges of,, and the running time i®)(|P,[).  described by Toussaint [11].

Proof: At each round the number of triangles get A pair rotating calipersremain in parallel. It rotate
doubled and the number of edges that become cut alsflong the boundary of an object with two calipers being
get doubled. So aftébg k rounds allk edges are cut.  tangents to the object. If the object is a convex polygon

Let the length ofP, be L,. At each round the total P, then one fixed caliper, which we call thase calipey
length of the bases plus the length of the edges that aiig tangent along an edgeof P and the other caliper is
being cut is no more thai,,. So, the total cutting cost tangent to a vertex or an edge Bf In the next step of the
is Ly, log k over all rounds. rotation, the base caliper moves to the next edge adjacent

For running time, finding the edgs, ,, takes constant to e and continue. The rotation ompletewhen the base
time. Moreover, once an edge becomes cut, it will not becaliper has encountered all edgesraf
considered for an edge cut again. So, there can be at mostFor our case we use two pairs of rotating calipers,
|P,| edge cuts, which gives a running time ©f|P,|). = where one pair is orthogonal to the other. We fixed only

B one caliper, among the four, as the base caliper. As we

Corollary 1: Total cutting cost of curving phase is rotate along the boundary aP, we always place the
C*logn and the running time i©(n). base caliper along an edge 6f and adjust other three

Proof: Over all six obtuse triangles. L, is no more  calipers as the tangents #f The four calipers give us a
than the perimeter of?, which is bounded byC*, and bounding rectangle of’. After the rotation is complete,
> |P.| = n. Therefore, for all six triangles, the total cost we identify the minimum area rectangle among the
is at most)_ L, logk = C*logn and running time is bounding rectangles. For that rectangle we apply one cut



along each of its edges that are not collinear with the V. CONCLUSION

chord of the D. In this paper we have given two algorithms for cutting
The above technique can be done(in) time [11].  a convex polygorP out of a circleQ by using line cuts
Once the base calipers is placed along an edge, the othghere P resides in one side of a diameter@f Our first
three calipers are also rotated and adjusted to make thesgorithm is anO(log n)-approximation algorithm with
tangent toP’. Notice that each caliper “traverses” an edgeO(n) running time, where: is the number of edges dt.
or a vertex exactly once. Our second algorithm is 6.48-approximation algorithm
with running timeO(n?).
\ While there exist several algorithms whéhis another
77777777777 polygon, we are the first to address the problem wligre
is a circle. Our first algorithm has a better running time
and the second one has better approximation ratio than
the best known previous algorithms that deal withas
a convex polygon.
There remain several open problems and directions for
future research:

1) The general case of this problem whdreis not
necessarily in one side of a diameter @fis still
to be solved.

2) We also think it would be interesting to see approx-

Figure 8. Rotating two pairs of orthogonal calipers. The broken lines imation schemes for this problem.

are the total cutting cost of this phase. 3) Finally, in many industry applications it is common

to have bothP and@ as 3D objects, for which we

Lemma 8:The cost of cutting a minimum area rectan- do not know any algorithm. In future it is important

gle out of the D achieved from the D-separation phase is to design similar algorithms for the 3D case.

no more thar2.57C*.
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